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The various elements of geomorphometric toolkit of
surface analysis, proved to be useful in tectonic geomor-
phology (Marple & Talwani 2000; Keller & Pinter 2002)
have been applied to analyse our study area situated be-
tween the still uplifting Eastern Alps and the subsiding Dan-
ube Basin. (For detailed description of the study area see
Kovécs, in this volume). In this paper, we studied young
(Late Miocene) deformations that exhibit vertically small
scale topographic variations and vertical displacements.
These are hardly observable in existing industrial seismic
sections due to the low (~30 m) vertical resolution. Further
on, existing seismic profiles explore only some parts of the
study area. Rock outcrops are scarce due to the intense veg-
etation. Even a qualitative visual comparison may reveal
differences among parts of the study area, however Digital
Elevation Model (DEM) based geomorphometry is required
for an in-depth study of these differences.

DEM was analyzed in order to compare subunits of the
area. Average elevation, general tilt of the envelope surface,
slope and aspect distributions proved to be very efficient in
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Fig. 1. Differences of mode of slope in the study area with the de-
lineated subunits. Accuracy is 1°, window size 1000 m. For loca-
tion see the inset.

this analysis (Fig. 1). These methods revealed significant
differences among subunits that are partly caused by tecton-
ics. Topographic swath profile analysis is considered to be
an improved, DEM-based version of traditional cross-sec-
tion analysis. To avoid arbitrariness of simple line profiles,
the swath method horizontally expands the cross section
line into a rectangular swath. Commonly, profile Z values
are calculated as statistical parameters (minimum, mean,
maximum, etc.) of elevation values being at the same dis-
tance from the baseline of the swath (Telbisz et al., 2013).
Topographic swath analyses applied for the surface and for
Pleistocene gravel terraces distinctly, revealed the post-sed-
iment tilting of different blocks (Telbisz ef al., 2013; Ko-
vacs & Telbisz, 2013). A robust DEM segmentation method
has been developed by Székely et al. (in review) for various
geoscientific applications. The algorithm takes DEM pixels
as a point cloud as input and is searching for planar features
that fulfill certain criteria controlled by user-defined param-
eters (number of points to calculate local normal vectors,
point-to-plane distance, angular tolerance, etc.). Although
the segmentation is often sensitive to the initial parameters,
in many cases many fitted planes are stable. Many planes
tend to outline geomorphic features of the study area and
therefore they are suitable for further geomorphometric
analysis.

River style investigation (RSI) is a widely used method
(Holbrook & Schumm, 1999; Keller & Pinter, 2002; Marple
& Talwani, 2002) proved to be efficient in neotectonic in-
vestigation applied to different parts of the Pannonian Basin
(Petrovszki & Timar, 2010; Zamolyi et al., 2010; Gal et al.,
2010; Petrovszki ef al., 2012). Sinuosity calculation of me-
andering segments is a frequently used component of RSI.
In our study, it was complemented with the identification of
other river styles such as straight, incised, anastomosing and
braided ones. Rivers rapidly, and more importantly, very
sensitively react to even small slope changes of the valley
floor by switching their river style. As river gradient incre-
ases, the pattern may become more sinuous or even braided,
whereas decreasing gradient segments become less sinuous,
straight or anastomosing. Thus, these changes are reflected
in the morphology (Ouchi, 1985). In the totally flat south-
eastern area streams turn left sharply in some cases where
aspect map suggest gentle folding. River style in that cases
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Fig. 2. Aspect map of the study area with river style investigation results and derived lineaments (for location see Fig. 1). 1 —derived linea-
ments, supposed fold axes; 2 — national border between Austria and Hungary; 3 — main streams; 4 — increasing stream gradient; 5 — decreas-
ing stream gradient; 6 — presumably structurally preformed valley; 7 — relative uplift.

reflect the same: the gradient of the valley floor decreases
where streams approach this folded structure, and it increa-
ses where streams leave the axis of this structure (Fig. 2).

The results referring to the Eastern foreland of the East-
ern Alps are described is Kovacs (in this volume).
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